Abstract

AbstractThere is a Turing computable embedding $\Phi $ of directed graphs $\mathcal {A}$ in undirected graphs (see [15]). Moreover, there is a fixed tuple of formulas that give a uniform effective interpretation; i.e., for all directed graphs $\mathcal {A}$ , these formulas interpret $\mathcal {A}$ in $\Phi (\mathcal {A})$ . It follows that $\mathcal {A}$ is Medvedev reducible to $\Phi (\mathcal {A})$ uniformly; i.e., $\mathcal {A}\leq _s\Phi (\mathcal {A})$ with a fixed Turing operator that serves for all $\mathcal {A}$ . We observe that there is a graph G that is not Medvedev reducible to any linear ordering. Hence, G is not effectively interpreted in any linear ordering. Similarly, there is a graph that is not interpreted in any linear ordering using computable $\Sigma _2$ formulas. Any graph can be interpreted in a linear ordering using computable $\Sigma _3$ formulas. Friedman and Stanley [4] gave a Turing computable embedding L of directed graphs in linear orderings. We show that there is no fixed tuple of $L_{\omega _1\omega }$ -formulas that, for all G, interpret the input graph G in the output linear ordering $L(G)$ . Harrison-Trainor and Montalbán [7] have also shown this, by a quite different proof.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.