Abstract

This dissertation studies the use of coding techniques to improve the reliability and security of distributed systems. The first three parts focus on distributed storage systems, and study schemes that encode a message into n shares, assigned to n nodes, such that any n - r nodes can decode the message (reliability) and any colluding z nodes cannot infer any information about the message (security). The objective is to optimize the computational, implementation, communication and access complexity of the schemes during the process of encoding, decoding and repair. These are the key metrics of the schemes so that when they are applied in practical distributed storage systems, the systems are not only reliable and secure, but also fast and cost-effective. Schemes with highly efficient computation and implementation are studied in Part I. For the practical high rate case of r ≤ 3 and z ≤ 3, we construct schemes that require only r + z XORs to encode and z XORs to decode each message bit, based on practical erasure codes including the B, EVENODD and STAR codes. This encoding and decoding complexity is shown to be optimal. For general r and z, we design schemes over a special ring from Cauchy matrices and Vandermonde matrices. Both schemes can be efficiently encoded and decoded due to the structure of the ring. We also discuss methods to shorten the proposed schemes. Part II studies schemes that are efficient in terms of communication and access complexity. We derive a lower bound on the decoding bandwidth, and design schemes achieving the optimal decoding bandwidth and access. We then design schemes that achieve the optimal bandwidth and access not only for decoding, but also for repair. Furthermore, we present a family of Shamir's schemes with asymptotically optimal decoding bandwidth. Part III studies the problem of secure repair, i.e., reconstructing the share of a (failed) node without leaking any information about the message. We present generic secure repair protocols that can securely repair any linear schemes. We derive a lower bound on the secure repair bandwidth and show that the proposed protocols are essentially optimal in terms of bandwidth. In the final part of the dissertation, we study the use of coding techniques to improve the reliability and security of network communication. Specifically, in Part IV we draw connections between several important problems in network coding. We present reductions that map an arbitrary multiple-unicast network coding instance to a unicast secure network coding instance in which at most one link is eavesdropped, or a unicast network error correction instance in which at most one link is erroneous, such that a rate tuple is achievable in the multiple-unicast network coding instance if and only if a corresponding rate is achievable in the unicast secure network coding instance, or in the unicast network error correction instance. Conversely, we show that an arbitrary unicast secure network coding instance in which at most one link is eavesdropped can be reduced back to a multiple-unicast network coding instance. Additionally, we show that the capacity of a unicast network error correction instance in general is not (exactly) achievable. We derive upper bounds on the secrecy capacity for the secure network coding problem, based on cut-sets and the connectivity of links. Finally, we study optimal coding schemes for the network error correction problem, in the setting that the network and adversary parameters are not known a priori.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.