Abstract
Local features represent a powerful tool which is exploited in several applications such as visual search, object recognition and tracking, etc. In this context, binary descriptors provide an efficient alternative to real-valued descriptors, due to low computational complexity, limited memory footprint and fast matching algorithms. The descriptor consists of a binary vector, in which each bit is the result of a pairwise comparison between smoothed pixel intensities. In several cases, visual features need to be transmitted over a bandwidth-limited network. To this end, it is useful to compress the descriptor to reduce the required rate, while attaining a target accuracy for the task at hand. The past literature thoroughly addressed the problem of coding visual features extracted from still images and, only very recently, the problem of coding real-valued features (e.g., SIFT, SURF) extracted from video sequences. In this paper we propose a coding architecture specifically designed for binary local features extracted from video content. We exploit both spatial and temporal redundancy by means of intra-frame and inter-frame coding modes, showing that significant coding gains can be attained for a target level of accuracy of the visual analysis task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.