Abstract

BackgroundPrevious research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. The role of de novo noncoding variation has been observable as a general increase in genetic burden but has yet to be resolved to individual functional elements. In this study, we assessed whole-genome sequencing data in 2671 families with autism (discovery cohort of 516 families, replication cohort of 2155 families). We focused on DNVs in enhancers with characterized in vivo activity in the brain and identified an excess of DNVs in an enhancer named hs737.ResultsWe adapted the fitDNM statistical model to work in noncoding regions and tested enhancers for excess of DNVs in families with autism. We found only one enhancer (hs737) with nominal significance in the discovery (p = 0.0172), replication (p = 2.5 × 10−3), and combined dataset (p = 1.1 × 10−4). Each individual with a DNV in hs737 had shared phenotypes including being male, intact cognitive function, and hypotonia or motor delay. Our in vitro assessment of the DNVs showed they all reduce enhancer activity in a neuronal cell line. By epigenomic analyses, we found that hs737 is brain-specific and targets the transcription factor gene EBF3 in human fetal brain. EBF3 is genome-wide significant for coding DNVs in NDDs (missense p = 8.12 × 10−35, loss-of-function p = 2.26 × 10−13) and is widely expressed in the body. Through characterization of promoters bound by EBF3 in neuronal cells, we saw enrichment for binding to NDD genes (p = 7.43 × 10−6, OR = 1.87) involved in gene regulation. Individuals with coding DNVs have greater phenotypic severity (hypotonia, ataxia, and delayed development syndrome [HADDS]) in comparison to individuals with noncoding DNVs that have autism and hypotonia.ConclusionsIn this study, we identify DNVs in the hs737 enhancer in individuals with autism. Through multiple approaches, we find hs737 targets the gene EBF3 that is genome-wide significant in NDDs. By assessment of noncoding variation and the genes they affect, we are beginning to understand their impact on gene regulatory networks in NDDs.

Highlights

  • Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding de novo variants (DNVs) within specific genes

  • Though genome-wide association studies (GWAS) have identified multiple common noncoding variants associated with human disorders [5,6,7], whole-genome sequencing (WGS) has provided access to rare de novo variants (DNVs) which are difficult to associate with phenotype without using aggregation methods [8,9,10,11]

  • We focused on 544 VISTA human noncoding enhancers (Supplemental Table S1, Supplemental Table S2) previously shown to have enhancer activity in the brain using a lacZ transgenic assay at embryonic day 11.5 in mice [27]

Read more

Summary

Introduction

Previous research in autism and other neurodevelopmental disorders (NDDs) has indicated an important contribution of protein-coding (coding) de novo variants (DNVs) within specific genes. To begin to parse out the underlying biology of autism DNVs in individual regulatory regions, we turned to VISTA, which is a database of functionally characterized developmental enhancers [26,27,28] These enhancers were identified based on multiple strategies including sequence conservation and epigenetic signatures. We applied our updated version of the fitDNM model to VISTA enhancers with known ability to drive expression in the embryonic brain Application of this test in 2671 families with autism (n = 9831 individuals) revealed one VISTA enhancer (named hs737) with nominal significance for excess of DNVs in autism in our discovery cohort (516 families), replication cohort (2155 families), and the combined dataset. This work provides critical insights into coding and noncoding DNVs at EBF3 and more generally in neurodevelopmental disorders

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call