Abstract
Let $$M \subset {\mathbb {C}}^{n+1}$$ , $$n \ge 2$$ , be a real codimension two CR singular real analytic submanifold that is nondegenerate and holomorphically flat. We prove that every real analytic function on M that is CR outside the CR singularities extends to a holomorphic function in a neighbourhood of M. Our motivation is to prove the following analogue of the Hartogs–Bochner theorem. Let $$\Omega \subset {\mathbb {C}}^n \times {\mathbb {R}}$$ , $$n \ge 2$$ , be a bounded domain with a connected real analytic boundary such that $$\partial \Omega $$ has only nondegenerate CR singularities. We prove that if $$f :\partial \Omega \rightarrow {\mathbb {C}}$$ is a real analytic function that is CR at CR points of $$\partial \Omega $$ , then f extends to a holomorphic function on a neighbourhood of $${\overline{\Omega }}$$ in $${\mathbb {C}}^n \times {\mathbb {C}}$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.