Abstract

A vibro-impact forming machine with double masses is considered. The components of the vibrating system collide with each other. Such models play an important role in the studies of dynamics of mechanical systems with impacting components. The Poincare section associated with the state of the impact-forming system, just immediately after the impact, is chosen, and the period n single-impact motion and its disturbed map are derived analytically. A center manifold theorem technique is applied to reduce the Poincare map to a two-dimensional map, and the normal form map associated with codimension two bifurcation of 1:2 resonance is obtained. Unfolding of the normal form map is analyzed. Dynamical behavior of the impact-forming system, near the point of codimension two bifurcation, is investigated by using qualitative analyses and numerical simulation. Near the point of codimension two bifurcation there exists not only Neimark-Sacker bifurcation associated with period one single-impact motion, but also Neimark-Sacker bifurcation of period two double-impact motion. Transition of different forms of fixed points of single-impact periodic orbits, near the bifurcation point, is demonstrated, and different routes from periodic impact motions to chaos are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call