Abstract
The theorem of Hartman and Nirenberg classifies codimension one isometric immersions between Euclidean spaces as cylinders over plane curves. Corresponding results are given here for Lorentz spaces, which are Euclidean spaces with one negative-definite direction (also known as Minkowski spaces). The pivotal result involves the completeness of the relative nullity foliation of such an immersion. When this foliation carries a nondegenerate metric, results analogous to the Hartman-Nirenberg theorem obtain. Otherwise, a new description, based on particular surfaces in the three-dimensional Lorentz space, is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.