Abstract

Clinical decision support systems have the potential to improve work flows of experts in practice (e.g. therapist's evidence-based rehabilitation assessment). However, the adoption of these systems is challenging, and the gains of these systems have not fully demonstrated yet. In this paper, we identified the needs of therapists to assess patient's functional abilities (e.g. alternative perspectives with quantitative information on patient's exercise motions). As a result, we co-designed and developed an intelligent decision support system that automatically identifies salient features of assessment using reinforcement learning to assess the quality of motion and generate patient-specific analysis. We evaluated this system with seven therapists using the dataset from 15 patients performing three exercises. The results show that therapists have higher usage intent on our system than a traditional system without patient-specific analysis ($p < 0.05$). While presenting richer information ($p < 0.10$), our system significantly reduces therapists' effort on assessment ($p < 0.10$) and improves their agreement on assessment from 0.66 to 0.71 F1-scores ($p < 0.01$). This work discusses the importance of human centered design and development of a machine learning-based decision support system that presents contextually relevant information and salient explanations on its prediction for better adoption in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.