Abstract
In graph theory, a tree is one of the more popular families of graphs with a wide range of applications in computer science as well as many other related fields. While there are several distance measures over the set of all trees, we consider here the one which defines the so-called tree distance, defined by the minimum number of edit operations, of removing and adding edges, in order to change one tree into another. From a coding theoretic perspective, codes over the tree distance are used for the correction of edge erasures and errors. However, studying this distance measure is important for many other applications that use trees and properties on their locality and the number of neighbor trees. Under this paradigm, the largest size of code over trees with a prescribed minimum tree distance is investigated. Upper bounds on these codes as well as code constructions are presented. A significant part of our study is dedicated to the problem of calculating the size of the ball of trees of a given radius. These balls are not regular and thus we show that while the star tree has asymptotically the smallest size of the ball, the maximum is achieved for the path tree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.