Abstract

Racetrack memory is a new technology which utilizes magnetic domains along a nanoscopic wire in order to obtain extremely high storage density. In racetrack memory, each magnetic domain can store a single bit of information, which can be sensed by a reading port (head). The memory is structured like a tape which supports a shift operation that moves the domains to be read sequentially by the head. In order to increase the memory's speed, prior work studied how to minimize the latency of the shift operation, while the no less important reliability of this operation has received only a little attention. In this work we continue our recent study and design codes which combat shift errors in racetrack memory, called position errors. Namely, shifting the domains is not an error-free operation and the domains may be over-shifted or are not shifted, which can be modeled as deletions and sticky insertions. While it is possible to use conventional deletion and insertion-correcting codes, we tackle this problem with the special structure of racetrack memory, where the domains can be read by multiple heads. We will show how to take advantage of this special feature of racetrack memories in order to construct codes correcting deletions and sticky insertions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call