Abstract

The paper mostly concerns applications of the generalized differentiation theory in variational analysis to Lipschitzian stability and metric regularity of variational systems in infinite-dimensional spaces. The main tools of our analysis involve coderivatives of set-valued mappings that turn out to be proper extensions of the adjoint derivative operator to nonsmooth and set-valued mappings. The involved coderivatives allow us to give complete dual characterizations of certain fundamental properties in variational analysis and optimization related to Lipschitzian stability and metric regularity. Based on these characterizations and extended coderivative calculus, we obtain efficient conditions for Lipschitzian stability of variational systems governed by parametric generalized equations and their specifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.