Abstract

In this paper, we present a novel low-light image enhancement method by combining optimization-based decomposition and enhancement network for simultaneously enhancing brightness and contrast. The proposed method works in two steps including Retinex decomposition and illumination enhancement, and can be trained in an end-to-end manner. The first step separates the low-light image into illumination and reflectance components based on the Retinex model. Specifically, it performs model-based optimization followed by learning for edge-preserved illumination smoothing and detail-preserved reflectance denoising. In the second step, the illumination output from the first step, together with its gamma corrected and histogram equalized versions, serves as input to illumination enhancement network (IEN) including residual squeeze and excitation blocks (RSEBs). Extensive experiments prove that our method shows better performance compared with state-of-the-art low-light enhancement methods in the sense of both objective and subjective measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.