Abstract

Sirolimus is recognized as a P-glycoprotein (P-gp) substrate with poor water-solubility. To improve its solubility and bioabsorption, self-microemulsifying drug delivery systems (SMEDDS) containing a novel P-gp inhibitor, honokiol, were prepared. The aim of this work was to evaluate the enhanced transport of sirolimus SMEDDS as well as the roles of honokiol. In situ single-pass intestinal perfusion and in vitro human colon adenocarcinoma (Caco-2) cell models were applied to study the effects of honokiol within SMEDDS on the transport of sirolimus. The results indicated that a combination of honokiol with sirolimus in SMEDDS did not significantly alter the particle size, polydispersity index and release of drugs. In addition, the absorption rate constant (Ka) as well as the effective permeability coefficients (Peff) of sirolimus in situ intestinal absorption, and the apparent permeability coefficients (Papp) of sirolimus in caco-2 cells were significantly enhanced by cremophor EL-based SMEDDS with honokiol as compared with those of SMEDDS without honokiol. Rhodamine123 uptake rate in caco-2 cells and in vitro cytotoxicity of sirolimus were enhanced by honokiol in SMEDDS indicating a substantial P-gp inhibition of honokiol. In conclusion, coadministration of honokiol with poor soluble P-gp substrate in SMEDDS, could serve as a favorable approach for oral delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.