Abstract

A bacterial genetics-guided approach was utilized for the discovery of new compounds affecting bacterial genome stability. Fungal extracts and fractions were tested for genome instability-mediated antibacterial activity. Interaction assays and RT-qPCR were used to identify compounds that boostthe activity of sub-minimum inhibitory concentrationstreptomycin and obtain insights on the molecular mechanisms of the primary hit compound, respectively. Several extracts and fractions caused bacterial genome instability. Codeine, in synergy with streptomycin, regulates double-strand break (DSB)repair and causes bacterial ribosome dysfunction in the absence of DSBs, and dysregulation of ribosome biogenesis in a DSB-dependent manner. This study demonstrates a potential viable strategy that we are exploring for the discovery of new chemical entities with activities against Escherichia coli and other bacterial pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call