Abstract

We develop bandwidth efficient radio transceivers, using amplitude/phase modulations, for frequency non-selective channels whose time variations are typical of outdoor mobile wireless systems. The transceiver is noncoherent, neither requiring pilots for channel estimation and tracking nor assuming prior channel knowledge on the part of the receiver. Serial concatenation of a binary outer channel code with an inner differential modulation code provides a turbo structure that, along with the channel memory, is exploited for joint iterative channel and data estimation. While prior work on noncoherent communication mainly focuses on PSK alphabets, we consider a moderate to high SNR regime in which amplitude/phase constellations are more efficient. First, the complexity of block noncoherent demodulation is reduced to a level that is comparable to coherent receivers. Then, a tool for choosing the constellation and bit-to-symbol mapping is developed by adapting extrinsic information transfer (EXIT) charts for noncoherent demodulation. The recommended constellations differ significantly from standard coherent channel constellations, and from prior recommendations for uncoded noncoherent systems. The analysis shows that standard convolutional codes are nearly optimal when paired with differential amplitude/phase modulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call