Abstract

In this paper we address the problem of combatting combined interference in spread-spectrum communication links. We consider frequency-hopped spread-spectrum systems with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</tex> -ary FSK modulation and noncoherent demodulation which employ forward-error-control coding. The interference consists of partial-band noise jamming, nonselective Rician fading, other-user interference, and thermal noise. The coding schemes which we analyze include: ReedSolomon codes (with or without diversity and error-only, erasure-only, or parallel erasure/error decoding), binary, nonbinary, and dual- <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</tex> convolutional codes with and without side information (information about the state of the channel), and concatenated schemes (Reed-Solomon outer codes with either inner detection-only block codes or inner convolutional codes). In all cases we derive 1) the minimum signal-to-jammer energy ratio required to guarantee a desirable bit error rate as a function of ρ, the fraction of the band which is jammed, when the number of interfering users is fixed; and 2) the maximum number of users that can be supported by the system as a function of ρ, when the signal-to-jammer energy ratio is fixed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.