Abstract

X-ray diffraction tomography (XDT) probes the spatially variant x-ray diffraction (XRD) profile within volumetric objects. Here, we demonstrate a tabletop XDT setup with coded cone-beam illumination that accelerates the acquisition process of three-dimensional (3D) objects. Compared to the attenuation-based x-ray computed tomography (CT), XDT images display high contrast and specificity among materials with similar absorption coefficients. However, due to the weak signal level of diffraction and the low efficiency in source utilization and detection, conventional XDT systems require high-brilliance synchrotron sources to manage the acquisition time. In this paper, we propose a coded-illumination XDT system that utilizes the cone-beam from a tabletop x-ray tube and eliminates the detector-side collimation. The multiplexed measurement promotes parallelization in the data acquisition and enables simple implementation of compressive measurements, addressing the need of tabletop XDT systems in industrial nondestructive testing and medical imaging applications. We have demonstrated 1 order of magnitude reduction in XDT acquisition time, making high-contrast 3D x-ray imaging accessible to various research and application areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.