Abstract

Coded aperture X-ray computed tomography (CAXCT) systems reconstruct high quality images of the inner structure of an object from a few coded illumination measurements. Since the computed tomography (CT) system matrix is highly structured, random coded apertures lead to lower quality image reconstructions. In this paper, the noisy forward models of CAXCT in both Gaussian noise and Poisson noise are formulated and analyzed. In addition, a coded aperture optimization approach based on sparse principal component analysis is proposed to maximize the information sensed by a set of fan-beam projections. The complexity of the proposed optimization method is on the same order of magnitude as that of state-of-the-art methods but provide superior image quality. Computational experiments using simulated datasets and real datasets show gains up to $\sim$ 4.3 dB with SNR = 25 dB in the reconstruction image quality compared with that attained by random coded apertures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.