Abstract

Low energy nuclear physics experiments are transitioning towards fully digital data acquisition systems. Realizing the gains in flexibility afforded by these systems relies on equally flexible data reduction techniques. In this paper, methods utilizing data frames and in-memory techniques to work with data, including data from self-triggering, digital data acquisition systems, are discussed within the context of a Python package, sauce. It is shown that data frame operations can encompass common analysis needs and allow interactive data analysis. Two event building techniques, dubbed referenced and referenceless event building, are shown to provide a means to transform raw list mode data into correlated multi-detector events. These techniques are demonstrated in the analysis of two example data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.