Abstract

The Single Instruction, Multiple Thread (SIMT) paradigm of GPU programming does not support the branching nature of a parton shower algorithm by definition. However, modern GPUs are designed to schedule threads with diverging processes independently, allowing them to handle such branches. With regular thread synchronisation and careful treatment of the individual steps, one can simulate a parton shower on a GPU. We present a Sudakov veto algorithm designed to simulate parton branching on multiple events in parallel. We also release a CUDA C++ program that generates matrix elements, showers partons and computes jet rates and event shapes for LEP at 91.2 GeV on a GPU. To benchmark its performance, we also provide a near-identical C++ program designed to simulate events serially on a CPU. While the consequences of branching are not absent, we demonstrate that a GPU can provide the throughput of a many-core CPU. As an example, we show that the time taken to shower 10^6106 events on one NVIDIA TESLA V100 GPU is equivalent to that of 295 Intel Xeon E5-2620 CPU cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.