Abstract

Code smells are the result of not following software engineering principles during software development, especially in the design and coding phase. It leads to low maintainability. To evaluate the quality of software and its maintainability, code smell detection can be helpful. Many machine learning algorithms are being used to detect code smells. In this study, we applied five ensemble machine learning and two deep learning algorithms to detect code smells. Four code smell datasets were analyzed: the Data class, the God class, the Feature-envy, and the Long-method datasets. In previous works, machine learning and stacking ensemble learning algorithms were applied to this dataset and the results found were acceptable, but there is scope of improvement. A class balancing technique (SMOTE) was applied to handle the class imbalance problem in the datasets. The Chi-square feature extraction technique was applied to select the more relevant features in each dataset. All five algorithms obtained the highest accuracy—100% for the Long-method dataset with the different selected sets of metrics, and the poorest accuracy, 91.45%, was achieved by the Max voting method for the Feature-envy dataset for the selected twelve sets of metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.