Abstract
Code loops are certain Moufang 2-loops constructed from doubly even binary codes that play an important role in the construction of local subgroups of sporadic groups. More precisely, code loops are central extensions of the group of order 2 by an elementary abelian 2-group V in the variety of loops such that their squaring map, commutator map and associator map are related by combinatorial polarization and the associator map is a trilinear alternating form.Using existing classifications of trilinear alternating forms over the field of 2 elements, we enumerate code loops of dimension d=dim(V)≤8 (equivalently, of order 2d+1≤512) up to isomorphism. There are 767 code loops of order 128, and 80826 of order 256, and 937791557 of order 512.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.