Abstract

Helical coil once-through steam generators (HCOTSGs) have been widely used in the design of small modular reactor (SMR) during the past several decades. As the widely accepted system analysis code, RELAP5 underestimates the heat transfer capability and pressure drop of helical coil tube steam generators using the original geometrical parameters of HCOTSG, because the built-in thermal-hydraulic empirical correlations are only suitable for straight tubes. In this study, thermal-hydraulic models for helical coil tubes and tube bundles are implemented in RELAP5 while the original functions of the code are not affected. A new flag for helical component is proposed and heat transfer boundaries for tube side and shell side are developed. The separate-effect validations of friction factor and heat transfer in helical coil tube are carried out based on experimental data and code-to-code verification. Then, the original RELAP5 and developed RELAP5-HCOTSG are used to simulate helical coil tube steam generators of two SMRs. One is the integral reactor IRIS, and the other is MRX. The calculated results are compared to the design parameters. It shows that the HCOTSG module developed in this study can improve the capability of RELAP5 to predict the thermal-hydraulic characteristics in SMR once-through steam generators with helical coil tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call