Abstract
AbstractMetasurface holography is attracting increasing attention owing to its numerous advantages over conventional holography techniques, such as precise control of phase profiles, compact sizes, and multiple information channels via a single optical element. Metasurfaces provide a flexible platform for incorporating various multiplexing techniques. Inspired by code division multiplexing (CDM), which is widely employed in networking and wireless digital communications, metasurface holography for generating dynamic holographic images controlled by both the patterned beam profiles and polarization states is designed and realized in this study. Specifically, two orthogonal polarization states and 16 code bases of light illumination are combined to generate 32 independent channels. Only the correct code reference can decode the target image for a specific channel, providing encryption for information transportation. Meanwhile, the demonstrated metasurface holography with CDM can realize active modulation via a digital micromirror device. The proposed metasurface can be utilized to achieve dynamic information display, data storage, optical encryption, and other applications in optics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.