Abstract

Pb–Bi-cooled direct contact boiling water fast reactor (PBWFR) can produce steam from the direct contact of feed-water and lead bismuth eutectic (LBE) in the chimney of 3 m height, which eliminates the bulky and flimsy steam generators. Moreover, as the coolant LBE is driven by the buoyancy of steam bubbles, the primary pump is not necessary in the reactor. The conceptual design makes the reactor simple, compact and economical. Owing to the large thermal expansion coefficient of LBE and good performance of steam lift pump, the reactor is expected to have good passive safety. A new computer code is developed to investigate the thermal–hydraulic behaviors and safety performance of PBWFR in the present work. Unprotected rod run-out transient over power (UTOP) and unprotected loss of flow (ULOF)/unprotected loss of heat sink (ULOHS) are simulated to test and verify its safety. The results show that PBWFR has very good inherent safety due to the satisfactory neutron and thermal–physical properties of LBE. Cladding materials turn to be the key factor to restrict its safety performance and UTOP is more dangerous for PBWFR. It's suggested that it should appropriately reduce the maximum value of the control rods to mitigate the consequence of UTOP due to good reactivity feedbacks in the core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.