Abstract
Ethereum is a blockchain platform that hosts and executes smart contracts. Smart contracts have been used to implement cryptocurrencies and crowdfunding initiatives (ICOs). A major concern in Ethereum is the security of smart contracts. Different from traditional software development, smart contracts are immutable once deployed. Hence, vulnerabilities and bugs in smart contracts can lead to catastrophic financial loses. In order to avoid taking the risk of writing buggy code, smart contract developers are encouraged to reuse pieces of code from reputable sources (e.g., OpenZeppelin). In this paper, we study code cloning in Ethereum. Our goal is to quantify the amount of clones in Ethereum (RQ1), understand key characteristics of clone clusters (RQ2), and determine whether smart contracts contain pieces of code that are identical to those published by OpenZeppelin (RQ3). We applied Deckard, a tree-based clone detector, to all Ethereum contracts for which the source code was available. We observe that developers frequently clone contracts. In particular, 79.2% of the studied contracts are clones and we note an upward trend in the number of cloned contracts per quarter. With regards to the characteristics of clone clusters, we observe that: (i) 9 out of the top-10 largest clone clusters are token managers, (ii) most of the activity of a cluster tends to be concentrated on a few contracts, and (iii) contracts in a cluster to be created by several authors. Finally, we note that the studied contracts have different ratios of code blocks that are identical to those provided by the OpenZeppelin project. Due to the immutability of smart contracts, as well as the impossibility of reverting transactions once they are deemed final, we conclude that the aforementioned findings yield implications to the security, development, and usage of smart contracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.