Abstract

Code clone refers to code snippets that are copied and pasted with or without modifications. In recent years, traditional approaches for clone detection combine with other domains for better detection of a clone. This paper discusses the systematic literature review of machine learning techniques used in code clone detection. This study provides insights into various tools and techniques developed for clone detection by implementing machine learning approaches and how effectively those tools and techniques to identify clones. The authors perform a systematic literature review on studies selected from popular computer science-related digital online databases from January 2004 to January 2020. The software system and datasets used for analyzing tools and techniques are mentioned. A neural network machine learning technique is primarily used for the identification of the clone. Clone detection based on a program dependency graph must be explored in the future because it carries semantic information of code fragments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.