Abstract

SUMMARYProbabilistic sensitivity kernels based on the analytical solution of the diffusion and radiative transfer equations have been used to locate tiny changes detected in late arriving coda waves. These analytical kernels accurately describe the sensitivity of coda waves towards velocity changes located at a large distance from the sensors in the acoustic diffusive regime. They are also valid to describe the acoustic waveform distortions (decorrelations) induced by isotropically scattering perturbations. However, in elastic media, there is no analytical solution that describes the complex propagation of wave energy, including mode conversions, polarizations, etc. Here, we derive sensitivity kernels using numerical simulations of wave propagation in heterogeneous media in the acoustic and elastic regimes. We decompose the wavefield into P- and S-wave components at the perturbation location in order to construct separate P to P, S to S, P to S and S to P scattering sensitivity kernels. This allows us to describe the influence of P- and S-wave scattering perturbations separately. We test our approach using acoustic and elastic numerical simulations where localized scattering perturbations are introduced. We validate the numerical sensitivity kernels by comparing them with analytical kernel predictions and with measurements of coda decorrelations on the synthetic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.