Abstract
<p style='text-indent:20px;'>We prove a rigidity result for cocycles from higher rank lattices to <inline-formula><tex-math id="M2">\begin{document}$ \mathrm{Out}(F_N) $\end{document}</tex-math></inline-formula> and more generally to the outer automorphism group of a torsion-free hyperbolic group. More precisely, let <inline-formula><tex-math id="M3">\begin{document}$ G $\end{document}</tex-math></inline-formula> be either a product of connected higher rank simple algebraic groups over local fields, or a lattice in such a product. Let <inline-formula><tex-math id="M4">\begin{document}$ G \curvearrowright X $\end{document}</tex-math></inline-formula> be an ergodic measure-preserving action on a standard probability space, and let <inline-formula><tex-math id="M5">\begin{document}$ H $\end{document}</tex-math></inline-formula> be a torsion-free hyperbolic group. We prove that every Borel cocycle <inline-formula><tex-math id="M6">\begin{document}$ G\times X\to \mathrm{Out}(H) $\end{document}</tex-math></inline-formula> is cohomologous to a cocycle with values in a finite subgroup of <inline-formula><tex-math id="M7">\begin{document}$ \mathrm{Out}(H) $\end{document}</tex-math></inline-formula>. This provides a dynamical version of theorems of Farb–Kaimanovich–Masur and Bridson–Wade asserting that every homomorphism from <inline-formula><tex-math id="M8">\begin{document}$ G $\end{document}</tex-math></inline-formula> to either the mapping class group of a finite-type surface or the outer automorphism group of a free group, has finite image.</p><p style='text-indent:20px;'>The main new geometric tool is a barycenter map that associates to every triple of points in the boundary of the (relative) free factor graph a finite set of (relative) free splittings.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.