Abstract

BackgroundThe cellulolytic thermophile Clostridium thermocellum is an important biocatalyst due to its ability to solubilize lignocellulosic feedstocks without the need for pretreatment or exogenous enzyme addition. At low concentrations of substrate, C. thermocellum can solubilize corn fiber > 95% in 5 days, but solubilization declines markedly at substrate concentrations higher than 20 g/L. This differs for model cellulose like Avicel, on which the maximum solubilization rate increases in proportion to substrate concentration. The goal of this study was to examine fermentation at increasing corn fiber concentrations and investigate possible reasons for declining performance.ResultsThe rate of growth of C. thermocellum on corn fiber, inferred from CipA scaffoldin levels measured by LC–MS/MS, showed very little increase with increasing solids loading. To test for inhibition, we evaluated the effects of spent broth on growth and cellulase activity. The liquids remaining after corn fiber fermentation were found to be strongly inhibitory to growth on cellobiose, a substrate that does not require cellulose hydrolysis. Additionally, the hydrolytic activity of C. thermocellum cellulase was also reduced to less-than half by adding spent broth. Noting that > 15 g/L hemicellulose oligosaccharides accumulated in the spent broth of a 40 g/L corn fiber fermentation, we tested the effect of various model carbohydrates on growth on cellobiose and Avicel. Some compounds like xylooligosaccharides caused a decline in cellulolytic activity and a reduction in the maximum solubilization rate on Avicel. However, there were no relevant model compounds that could replicate the strong inhibition by spent broth on C. thermocellum growth on cellobiose. Cocultures of C. thermocellum with hemicellulose-consuming partners—Herbinix spp. strain LL1355 and Thermoanaerobacterium thermosaccharolyticum—exhibited lower levels of unfermented hemicellulose hydrolysis products, a doubling of the maximum solubilization rate, and final solubilization increased from 67 to 93%.ConclusionsThis study documents inhibition of C. thermocellum with increasing corn fiber concentration and demonstrates inhibition of cellulase activity by xylooligosaccharides, but further work is needed to understand why growth on cellobiose was inhibited by corn fiber fermentation broth. Our results support the importance of hemicellulose-utilizing coculture partners to augment C. thermocellum in the fermentation of lignocellulosic feedstocks at high solids loading.

Highlights

  • Corn fiber represents a “Generation 1.5” biofuel feedstock, intermediate between starch and lignocellulose

  • The maximum rate of solubilization remained roughly the same with increasing solids loading. This is in contrast to the performance of C. thermocellum on the Typical methods to measure biocatalyst levels such as optical density or nitrogen analysis could not be used in these fermentations due to interference from the feedstock, so we performed LC–MS/MS proteomics analysis on centrifuged samples, using the cellulosome scaffoldin protein CipA in washed sample pellets as an indicator of active biocatalyst (Fig. 1c) [28]

  • Performance of cocultures of C. thermocellum with hemicellulose‐fermenting microbes Our results indicate that soluble hemicellulose hydrolysis products inhibit cellulase activity and Avicel growth more than growth on cellobiose

Read more

Summary

Introduction

Corn fiber represents a “Generation 1.5” biofuel feedstock, intermediate between starch and lignocellulose Since it is already present at corn-based biofuel facilities, Beri et al Biotechnol Biofuels (2021) 14:24 a corn fiber-based process can potentially be added to an existing corn ethanol plant in a ‘bolt-on’ configuration [1]. It represents an important possible opportunity to demonstrate thermophiles as a novel, low-cost cellulosic fuel technology. The cellulolytic thermophile Clostridium thermocellum is an important biocatalyst due to its ability to solubilize lignocellulosic feedstocks without the need for pretreatment or exogenous enzyme addition. The goal of this study was to examine fermentation at increasing corn fiber concentrations and investigate possible reasons for declining performance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call