Abstract
Delivery of stem cells with osteogenesis while enabling angiogenesis is important for vascularized bone tissue engineering. Here a three-dimensional (3D) co-culture system of dental pulp stem cells (DPSCs) and endothelial cells (ECs) was designed using porous microcarriers, and the feasibility of applying to bone tissue engineering was investigated in vitro. Highly porous spherical microcarriers made of degradable biopolymers were prepared with sizes of hundreds of micrometers. The microcarriers loaded with DPSCs were co-cultured with ECs embedded in a hydrogel of type I collagen. An optimal co-culture medium that preserves the viability of ECs while stimulating the osteogenic differentiation of DPSCs was found to be a 10:1 of osteogenic medium:endothelial medium. The co-cultured constructs of DPSCs/ECs showed significantly higher level of alkaline phosphatase activity than the mono-cultured cells. Moreover, the expressions of genes related with osteogenesis and angiogenesis were significantly up-regulated by the co-cultures with respect to the mono-cultures. Results imply the interplay between ECs and DPSCs through the designed 3D co-culture models. The microcarrier-enabled co-cultured cell system is considered to be useful as an alternative tool for future vascularized bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.