Abstract

Neural retinal organ cultures are used to investigate ocular pathomechanisms. However, these cultures lack the essential retinal pigment epithelium (RPE) cells, which are part of the actual in vivo retina. To simulate a more realistic ex vivo model, porcine neural retina explants were cocultured with ARPE-19 cells (ARPE-19 group), which are derived from human RPE. To identify whether the entire cells or just the cell factors are necessary, in a second experimental group, porcine neural retina explants were cultured with medium derived from ARPE-19 cells (medium group). Individually cultured neural retina explants served as controls (control group). After 8days, all neural retinas were analysed to evaluate retinal thickness, photoreceptors, microglia, complement factors and synapses (n = 6-8 per group). The neural retina thickness in the ARPE-19 group was significantly better preserved than in the control group (p = 0.031). Also, the number of L-cones was higher in the ARPE-19 group, as compared to the control group (p < 0.001). Furthermore, the ARPE-19 group displayed an increased presynaptic glutamate uptake (determined via vGluT1 labelling) and enhanced post-synaptic density (determined via PSD-95 labelling). Combined Iba1 and iNOS detection revealed only minor effects of ARPE-19 cells on microglial activity, with a slight downregulation of total microglia activity apparent in the medium group. Likewise, only minor beneficial effects on photoreceptors and synaptic structure were found in the medium group. This novel system offers the opportunity to investigate interactions between the neural retina and RPE cells, and suggests that the inclusion of a RPE feeder layer has beneficial effects on the ex vivo maintenance of neural retina. By modifying the culture conditions, this coculture model allows a better understanding of photoreceptor death and photoreceptor-RPE cell interactions in retinal diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.