Abstract

In a seawater-based open pond microalgae cultivation system salinity will increase gradually over time due to evaporative loss. Continuous salinity increase would lead to non-optimal salinities which negatively affect the biomass and fucoxanthin productivity. To increase and maintain high overall biomass and fucoxanthin productivity, even in the non-optimal salinity zone, two cultivation methods for marine and halotolerant microalgae were carried out, co-cultivation and stepwise cultivation (sequential cultivation). Two fucoxanthin-producing diatoms, Chaetoceros muelleri (marine) and Amphora sp. (halotolerant), were cultivated at non-optimal salinities between 59 and 65‰. Stepwise cultivation showed approximately 63% higher total biomass and 47% higher fucoxanthin productivity than that of co-culture. The ability to reutilize culture media in the stepwise cultivation increases the sustainability of that method. The use of a stepwise culture regime, coupled with a regimen of gradually increasing salinity, provides the possibility of year round fucoxanthin production from microalgae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.