Abstract

Carbamazepine (CBZ) is an anticonvulsant with very low water solubility, presenting as a white crystalline powder with poor mechanical properties and is hard to bend. To enhance CBZ’s physicochemical properties, such as water solubility and mechanical properties, we selected six cocrystal coformers (CCFs): nicotinamide (NIC), benzamide (BZM), salicylic acid (SCA), fumaric acid (FMA), trimesic acid (TMA), and hesperetin (HPE). Six CBZ cocrystals were successfully prepared using the solution method. Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and single crystal X-ray diffraction (SCXRD) were used to characterize the crystal structures and gain comprehensive insights into the six cocrystals. The mechanical, fluorescence, and solubility properties of the six cocrystals were tested. The results reveal that most of the prepared cocrystals exhibit improved water solubility and mechanical properties when compared to CBZ. Among them, the dissolution rate of cocrystals excluded from CBZ-HPE has increased by an average of 3 or 4 times compared to CBZ, while CBZ-HPE exhibits superior mechanical properties. Moreover, all six cocrystals possess better fluorescence performance than CBZ. We thoroughly evaluated the mechanical properties of the cocrystals through both experimental and theoretical approaches. This work provides a new direction for studying drug cocrystals to improve the physicochemical properties of drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.