Abstract

AbstractLuban locks with mortise and tenon structure have structural diversity and architectural stability, and it is extremely challenging to synthesize Luban lock‐like structures at the molecular level. In this work, we report the cocrystallization of two structurally related atom‐precise fcc silver nanoclusters Ag110(SPhF)48(PPh3)12 (Ag110) and Ag14(μ6‐S)(SPhF)12(PPh3)8 (Ag14). It is worth noting that the Ag110 cluster is the first compound to simulate the complex Luban lock structure at the molecular level. Meanwhile, Ag110 is the largest known fcc‐based silver nanocluster, so far, there is no precedent for fcc silver nanocluster with more than 100 silver atoms. DFT calculations show that Ag110 is a 58‐electron superatom with an electronically closed shell1S21P61D102S21F142P61G18. Ag110⋅Ag14 can rapidly catalyze the reduction of 4‐nitrophenol within 4 minutes. In addition, Ag110 presents clear structural evidence to reveal the critical size and mechanism of the transformation of metal core from fcc stacking to quasi‐spherical superatom. This research work provides an important structural model for studying the nucleation mechanism and structural assembly of silver nanoclusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call