Abstract
Deep CNN models have become state-of-the-art techniques in many application, e.g., face recognition, speaker recognition, and image classification. Although many studies address on speedup or compression of individual models, very few studies focus on co-compressing and unifying models from different modalities. In this work, to joint and compress face and speaker recognition models, a shared-codebook approach is adopted to reduce the redundancy of the combined model. Despite the modality of the inputs of these two CNN models are quite different, the shared codebook can support two CNN models of sound and image for speaker and face recognition. Experiments show the promising results of unified and co-compressing heterogeneous models for efficient inference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.