Abstract

Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

Highlights

  • Cocoa powder, derived from Theobroma cacao tree seeds, has a mixed composition of over 500 different compounds [1]

  • This effect is associated with changes in composition as well as the gene expression of some molecules in mesenteric lymph nodes (MLN) that could reflect the induction of tolerance to oral antigens, i.e., the ability to suppress immune reaction to food proteins, through cocoa intake

  • To gain insights into the mechanisms induced by a cocoa diet, we focused on the composition and some functional aspects of MLN cells, due to their important role in oral tolerance [39,40]

Read more

Summary

Introduction

Cocoa powder, derived from Theobroma cacao tree seeds, has a mixed composition of over 500 different compounds [1]. It contains macronutrients (carbohydrates, proteins, and lipids, both monounsaturated and saturated fatty acids), fiber (soluble and insoluble), minerals (calcium, cooper, magnesium, potassium), polyphenols (in particular it is rich in flavonoids such as epicatechin, catechin, and procyanidins), and methylxanthines (caffeine and theobromine) [2]. Most of cocoa’s health properties have been attributed to its polyphenol content [3,7] and, in this context, modulation of allergic reactions by several flavonoids has been described [8,9].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call