Abstract

Cocksfoot mottle virus (CfMV) coat protein (CP) localization was studied in plant and mammalian cells. Fusion of the full-length CP with enhanced green fluorescent protein (EGFP) localized to the cell nucleus whereas similar constructs lacking the first 33 N-terminal amino acids of CP localized to the cytoplasm. CP and EGFP fusions containing mutations in the arginine-rich motif of CP localized to the cytoplasm and to the nucleus in plant cells indicating the involvement of the motif in nuclear localization. In mammalian cells, mutations in the arginine-rich region were sufficient to completely abolish nuclear transport. The analysis of deletions of amino acid residues 1-11, 1-22, and 22-33 of CP demonstrated that there were two separate nuclear localization signals (NLS) within the N-terminus--a strong NLS1 in the arginine-rich region (residues 22-33) and a weaker NLS2 within residues 1-22. Analysis of point mutants revealed that the basic amino acid residues in the region of the two NLSs were individually not sufficient to direct CP to the nucleus. Additional microinjection studies with fluorescently labeled RNA and CP purified from CfMV particles demonstrated that the wild-type CP was capable of transporting the RNA to the nucleus. This feature was not sequence-specific in transient assays since both CfMV and GFP mRNA were transported to the cell nucleus by CfMV CP. Together the results suggest that the nucleus may be involved in CfMV infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.