Abstract

The Cockayne Syndrome group B (CSB) protein plays important roles in transcription, transcription-coupled nucleotide excision repair and base excision DNA repair. c-Abl kinase also plays a role in DNA repair as a regulator/coordinator of the DNA damage response. This study presents evidence that the N-terminal region of CSB interacts with the SH3 domain of c-Abl in vitro and in vivo. In addition, c-Abl kinase phosphorylates CSB at Tyr932. The subcellular localization of CSB to the nucleus and nucleolus is altered after phosphorylation by c-Abl. c-Abl-dependent phosphorylation of CSB increased in cells treated with hydrogen peroxide and decreased in cells pre-treated with STI-571, a c-Abl-specific protein kinase inhibitor. Activation of the c-Abl kinase in response to oxidative damage is not observed in CSB null cells. These results suggest that c-Abl and CSB may regulate each other in a reciprocal manner in response to oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.