Abstract

Methamphetamine (METH) increases the oxidative DNA lesion 8-oxoguanine (8-oxoG) in fetal mouse brain, and causes postnatal motor coordination deficits after in utero exposure. Like oxoguanine glycosylase 1 (OGG1), the Cockayne syndrome B (CSB) protein is involved in the repair of oxidatively damaged DNA, although its function is unclear. Here we used CSB-deficient Csb(m/m) knockout mice to investigate the developmental role of DNA oxidation and CSB in METH-initiated neurodevelopmental deficits. METH (40 mg/kg intraperitoneally) administration to pregnant Csb females on gestational day 17 increased 8-oxoG levels in Csb(m/m) fetal brains (p < 0.05). CSB modulated 8-oxoG levels independent of OGG1 activity, as 8-oxoG incision activity in fetal nuclear extracts was identical in Csb(m/m) and Csb(+/+)mice. This CSB effect was evident despite 7.1-fold higher OGG1 activity in Csb(+/+) mice compared to outbred CD-1 mice. Female Csb(m/m) offspring exposed in utero to METH exhibited motor coordination deficits postnatally (p < 0.05). In utero METH exposure did not cause dopaminergic nerve terminal degeneration, in contrast to adult exposures. This is the first evidence that CSB protects the fetus from xenobiotic-enhanced DNA oxidation and postnatal functional deficits, suggesting that oxidatively damaged DNA is developmentally pathogenic, and that fetal CSB activity may modulate the risk of reactive oxygen species-mediated adverse developmental outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.