Abstract

AbstractThe cochromatic number of a graph G, denoted by z(G), is the minimum number of subsets into which the vertex set of G can be partitioned so that each sbuset induces an empty or a complete subgraph of G. In this paper we introduce the problem of determining for a surface S, z(S), which is the maximum cochromatic number among all graphs G that embed in S. Some general bounds are obtained; for example, it is shown that if S is orientable of genus at least one, or if S is nonorientable of genus at least four, then z(S) is nonorientable of genus at least four, then z(S)≤χ(S). Here χ(S) denotes the chromatic number S. Exact results are obtained for the sphere, the Klein bottle, and for S. It is conjectured that z(S) is equal to the maximum n for which the graph Gn = K1 ∪ K2 ∪ … ∪ Kn embeds in S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.