Abstract

Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is a type of otoacoustic emission (OAE) that is calculated as a transfer function between forward pressure and reflected pressure. The purpose of this study was to compare wideband CR to distortion-product (DP) OAEs in two ways: (1) in a clinical-screening paradigm where the task is to determine whether an ear is normal or has hearing loss and (2) in the prediction of audiometric thresholds. The goal of the study was to assess the clinical utility of CR. Data were collected from 32 normal-hearing and 124 hearing-impaired participants. A wideband noise stimulus presented at 3 stimulus levels (30, 40, 50 dB sound pressure level) was used to elicit the CR. DPOAEs were elicited using primary tones spanning a wide frequency range (1 to 16 kHz). Predictions of auditory status (i.e., hearing-threshold category) and predictions of audiometric threshold were based on regression analysis. Test performance (identification of normal versus impaired hearing) was evaluated using clinical decision theory. When regressions were based only on physiological measurements near the audiometric frequency, the accuracy of CR predictions of auditory status and audiometric threshold was less than reported in previous studies using DPOAE measurements. CR predictions were improved when regressions were based on measurements obtained at many frequencies. CR predictions were further improved when regressions were performed on males and females separately. Compared with CR measurements, DPOAE measurements have the advantages in a screening paradigm of better test performance and shorter test time. The full potential of CR measurements to predict audiometric thresholds may require further improvements in signal-processing methods to increase its signal to noise ratio. CR measurements have theoretical significance in revealing the number of cycles of delay at each frequency that is most sensitive to hearing loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.