Abstract

Epithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.