Abstract

Correlational evidence in humans suggests that selective difficulties hearing in noisy, social settings may reflect premature auditory nerve degeneration. Here, we induced primary cochlear neural degeneration (CND) in adult mice and found direct behavioral evidence for selective detection deficits in background noise. To identify central determinants for this perceptual disorder, we tracked daily changes in ensembles of layer 2/3 auditory cortex parvalbumin-expressing inhibitory neurons and excitatory pyramidal neurons with chronic two-photon calcium imaging. CND induced distinct forms of plasticity in cortical excitatory and inhibitory neurons that culminated in net hyperactivity, increased neural gain, and reduced adaptation to background noise. Ensemble activity measured while mice detected targets in noise could accurately decode whether individual behavioral trials were hits or misses. After CND, random surges of hypercorrelated cortical activity occurring just before target onset reliably predicted impending detection failures, revealing a source of internal cortical noise underlying perceptual difficulties in external noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.