Abstract

Labeling cochlear nerve fibers in the inner ear of chinchillas with biotinylated dextran polyamine was used to trace the thin fibers (Type II), which likely innervate outer hair cells. These axons, 0.1–0.5 μm in diameter, were distinguished from the thicker Type I, fibers innervating inner hair cells, and traced to small-cell clusters in the cochlear nucleus. This study provided two major new insights into the outer hair cell connections in the cochlear nucleus and the potential significance of very thin axons and synaptic nests, which are widespread in the CNS. 1) EM serial reconstructions of labeled and unlabeled material revealed that Type II axons rarely formed synapses with conventional features (vesicles gathered at junctions). Rather, their endings contained arrays of endoplasmic reticulum and small spherical vesicles without junctions. 2) Type II axons projected predominantly to synaptic nests, where they contacted other endings and dendrites of local interneurons (small stellate and mitt cells, but not granule cells). Synaptic nests lacked intrinsic glia and, presumably, their high-affinity amino acid transporters. As functional units, nests and their Type II inputs from outer hair cells may contribute to an analog processing mode, which is slower, more diffuse, longer-lasting, and potentially more plastic than the digital processors addressed by inner hair cells. Synapse 33:83–117, 1999. © 1999 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.