Abstract
The spiking activity of auditory nerve fibers (ANFs) transmits information about the acoustic environment from the cochlea to the central auditory system. Increasing age leads to degeneration of cochlear tissues, including the sensory hair cells and stria vascularis. Here, we aim to identify the functional effects of such age-related cochlear pathologies of ANFs. Rate-level functions (RLFs) were recorded from single-unit ANFs of young adult (n = 52, 3-12 months) and quiet-aged (n = 24, >36 months) Mongolian gerbils of either sex. RLFs were used to determine sensitivity and spontaneous rates (SRs) and were classified into flat-saturating, sloping-saturating, and straight categories, as previously established. A physiologically based cochlear model, adapted for the gerbil, was used to simulate the effects of cochlear degeneration on ANF physiology. In ANFs tuned to low frequencies (<3.5 kHz), SR was lower in those of aged gerbils, while an age-related loss of low-SR fibers was evident in ANFs tuned to high frequencies. These changes in SR distribution did not affect the typical SR versus sensitivity correlation. The distribution of RLF types among low-SR fibers, however, shifted toward that of high-SR fibers, specifically showing more fast-saturating and fewer sloping-saturating RLFs. A modeled striatal degeneration, which affects the combined inner hair cell and synaptic output, reduced SR but left RLF type unchanged. An additional reduced basilar membrane gain, which decreased sensitivity, explained the changed RLF types. Overall, the data indicated age-related changes in the characteristics of single ANFs that blurred the established relationships between SR and RLF types.NEW & NOTEWORTHY Auditory nerve fibers, which connect the cochlea to the central auditory system, change their encoding of sound level in aged gerbils. In addition to a general shift to higher levels, indicative of decreased sensitivity, level coding was also differentially affected in fibers with low- and high-spontaneous rates. Loss of low-spontaneous rate fibers, combined with a general decrease of spontaneous rate, further blurs the categorization of auditory nerve fiber types in the aged gerbil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.