Abstract

In this paper we develop several algebraic structures on the simplicial cochains of a triangulated manifold and prove they converge to their differential-geometric analogues as the triangulation becomes small. The first such result is for a cochain cup product converging to the wedge product on differential forms. Moreover, we show any extension of this product to a C ∞ -algebra also converges to the wedge product of forms. For cochains equipped with an inner product, we define a combinatorial star operator and show that for a certain cochain inner product this operator converges to the smooth Hodge star operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.