Abstract

A key role has been identified for the circadian locomotor output cycles kaput (Clock) gene in the regulation of drug reward. Mice bearing a dominant negative mutation in the Clock gene (ClockΔ19 mice) exhibit increased cocaine-induced conditioned place preference, reduced anxiety- and depression-like behavior, increased sensitivity to intracranial self-stimulation, and increased dopaminergic cell activity in the ventral tegmental area. We sought to determine if this hyperhedonic phenotype extends to cocaine self-administration and measures of motivation. Two separate serial testing procedures were carried out (n = 7-10/genotype/schedule). Testing began with acquisition of sucrose pellet self-administration, implantation of intravenous catheter, acquisition of cocaine self-administration, and dose-response testing (fixed ratio or progressive ratio). To evaluate diurnal variations in acquisition behavior, these sessions occurred at Zeitgeber 2 (ZT2) or ZT14. WT and ClockΔ19 mice exhibited similar learning and readily acquired food self-administration at both ZT2 and ZT14. However, only ClockΔ19 mice acquired cocaine self-administration at ZT2. A greater percentage of ClockΔ19 mice reached acquisition criteria at ZT2 and ZT14. ClockΔ19 mice self-administered more cocaine than WT mice. Using fixed ratio and progressive ratio schedules of reinforcement dose-response paradigms, we found that cocaine is a more efficacious reinforcer in ClockΔ19 mice than in WT mice. Our results demonstrate that the Clock gene plays an important role in cocaine reinforcement and that decreased CLOCK function increases vulnerability for cocaine use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.