Abstract

The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D2-σ1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ1 receptors (σ1Rs) in the cocaine-provoked amplification of D2 receptor (D2R)-induced reduction of K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated.The dopamine D2-likeR agonist quinpirole (10nM–1μM), concentration-dependently reduced K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes. The σ1R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K+-evoked [3H]-DA, but not glutamate, release.Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K+-evoked [3H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects.In cotransfected σ1R and D2LR HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D2LR singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal.These results led us to hypothesize the existence of functional D2-σ1R complexes on the rat striatal DA and glutamate nerve terminals and functional D2-σ1R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D2R signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.