Abstract

Methyl CpG-binding protein-2 (MeCP2) is a transcriptional regulator that binds to methylated DNA at CpG sites and functions to silence DNA transcription. MeCP2 is subject to the phosphorylation modification at serine 421 (S421), which releases MeCP2 from DNA and thus facilitates gene expression. As a transcriptional repressor densely expressed in limbic reward circuits of adult mammalian brains, MeCP2 is recently emerging as a critical epigenetic factor in experience-dependent neural plasticity and psychostimulant addiction. In this study, we investigated the regulation of MeCP2 phosphorylation in the rat striatum by the psychostimulant cocaine in vivo. We found that acute systemic injection of cocaine increased MeCP2 phosphorylation at S421 in the rat striatum, including both the caudate putamen and the nucleus accumbens, while cocaine did not affect MeCP2 phosphorylation in the medial prefrontal cortex. The cocaine-stimulated MeCP2 phosphorylation in the nucleus accumbens was a rapid and transient event, as it was evident at 20min and returned to normal levels 3h after drug injection. The cocaine effect in the caudate putamen was however relatively delayed. Reliable induction of MeCP2 phosphorylation in this region was detected at 60min. Pretreatment with an N-methyl-d-aspartate (NMDA) glutamate receptor antagonist significantly reduced the cocaine-stimulated MeCP2 phosphorylation in the caudate putamen, although not in the nucleus accumbens. Our data support that MeCP2 is a sensitive target of psychostimulants. Its phosphorylation status is regulated by psychostimulant exposure. NMDA receptors play a region-specific role in linking cocaine to MeCP2 phosphorylation in striatal neurons in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call